Duality in Refined Sobolev-malliavin Spaces and Weak Approximation of Spde

نویسنده

  • ADAM ANDERSSON
چکیده

Abstract. We introduce a new family of refined Sobolev-Malliavin spaces that capture the integrability in time of the Malliavin derivative. We consider duality in these spaces and derive a Burkholder type inequality in a dual norm. The theory we develop allows us to prove weak convergence with essentially optimal rate for numerical approximations in space and time of semilinear parabolic stochastic evolution equations driven by Gaussian additive noise. In particular, we combine a standard Galerkin finite element method with backward Euler timestepping. The method of proof does not rely on the use of the Kolmogorov equation or the Itō formula and is therefore non-Markovian in nature. Test functions satisfying polynomial growth and mild smoothness assumptions are allowed, meaning in particular that we prove convergence of arbitrary moments with essentially optimal rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality in Refined Watanabe-sobolev Spaces and Weak Approximations of Spde

In this paper we introduce a new family of refined WatanabeSobolev spaces that capture in a fine way integrability in time of the Malliavin derivative. We consider duality in these spaces and derive a Burkholder type inequality in a dual norm. The theory we develop allows us to prove weak convergence with essentially optimal rate for numerical approximations in space and time of semilinear para...

متن کامل

OnWeak Convergence, Malliavin Calculus and Kolmogorov Equations in Infinite Dimensions

This thesis is focused around weak convergence analysis of approximations of stochastic evolution equations in Hilbert space. This is a class of problems, which is sufficiently challenging to motivate new theoretical developments in stochastic analysis. The first paper of the thesis further develops a known approach to weak convergence based on techniques from the Markov theory for the stochast...

متن کامل

Backward doubly stochastic differential equations with polynomial growth coefficients

In this paper we study the solvability of backward doubly stochastic differential equations (BDSDEs for short) with polynomial growth coefficients and their connections with SPDEs. The corresponding SPDE is in a very general form, which may depend on the derivative of the solution. We use Wiener-Sobolev compactness arguments to derive a strongly convergent subsequence of approximating SPDEs. Fo...

متن کامل

Semi-discretization of Stochastic Partial Differential Equations on R by a Finite-difference Method

The paper concerns finite-difference scheme for the approximation of partial differential equations in R1, with additional stochastic noise. By replacing the space derivatives in the original stochastic partial differential equation (SPDE, for short) with difference quotients, we obtain a system of stochastic ordinary differential equations. We study the difference between the solution of the o...

متن کامل

Semi-discretization of stochastic partial differential equations on R1 by a finite-difference method

The paper concerns finite-difference scheme for the approximation of partial differential equations in R1, with additional stochastic noise. By replacing the space derivatives in the original stochastic partial differential equation (SPDE, for short) with difference quotients, we obtain a system of stochastic ordinary differential equations. We study the difference between the solution of the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014